围绕“双碳”重大战略决策,伟德体育 李月英副教授和王建淦教授(柔性引进领军人才)聚焦电化学储能器件与转化及其关键材料研究,并在该领域取得了系列研究进展。近3年来,在Carbon (IF="10.5)、Journal of Colloid and Interface Science (IF="9.4)、Journal of Energy Storage (IF="8.9)、Journal of Alloys and Compounds (IF="5.8)等国际权威刊物上发表论文12篇,主要研究成果介绍如下:
【成果1】:自模板/活化法制备氮掺杂多孔碳纳米片用于超级电容器
本工作利用一种简单的自模板/活化方法来合成具有高孔隙率和丰富氮掺入的碳纳米片。有机盐(即柠檬酸钾)和尿素之间的交联网络在缩合热解中起着原位模板、活化和掺杂的三重作用,有利于富氮多孔碳纳米片的一步形成。得益于高表面积和氮掺杂,所得碳材料表现出卓越的电容特性:373 F/g 的高比电容、出色的倍率性能以及在10,000 次循环中高达97.5% 的保持率。该成果发表在《Journal of Energy Storage》期刊上。
【成果2】:温和催化调控硬碳微结构用于储钠
硬碳(HCs)作为钠离子电池的负极具有工业前景,但精确定制储能所需的碳微观结构仍然是一项巨大的挑战。本工作提出了一种有效的温和催化介导策略,以调节树脂衍生的HCs 的赝石墨结构,实现高效钠储存。研究结果表明,引入适量Mn2+能够促进赝石墨碳结构域的形成。优化后的HC在0.02 A g-1时获得340 mAh g-1的比容量,同时展现出优异的倍率性能(在1 A g-1时获得了181 mAh g-1的比容量)和循环稳定性。此外,通过各种动力学表征和原位拉曼测试系统地探索了性能增强原因和硬碳储钠机制。该成果发表在《Carbon》期刊上。
【成果3】:表面富铁的三金属氢氧化物用于析氧反应
低配位表面Fe对OER催化剂在碱性介质中的性能起着决定性作用,但构建富Fe表面是一个巨大的挑战。本工作合成了一种用于原位合成富含表面铁的OER 催化剂。在OER催化过程中,S 元素和配体的共蚀刻能够形成富含表面铁的三金属(氧)氢氧化物OER 催化剂。受益于表面富铁物质的高催化活性,该电极可提供234 mV 的超低过电位和超50小时的出色稳定性。该成果发表在《Journal of Colloid and Interface Science》期刊上
【成果4】:界面工程与表面重构协同提升Ni(OH)2的析氧性能
本工作使用水热-溶剂热法结合典型的配位化学技术制备植酸-铁络合物(PAFe) 修饰Co3O4/Ni(OH)2核-壳异质结。Co3O4纳米线能够增加导电性并抑制Ni(OH)2纳米片的团聚,紧密接触的界面可有效调节界面电子结构并增强电子转移能力。更重要的是,在OER催化反应过程中,PA 的浸出有利于Fe 物种在催化剂表面的溶解和再吸附,形成的无定形和活性多金属羟基氧化物加速催化反应动力学。研究结果显示,Co3O4/Ni(OH)2@PAFe呈现优异的OER 性能:在10 mA cm -2下具有230 mV的低过电位(与原始Ni(OH)2相比降低了84 mV))、43 mV dec-1的Tafel 斜率,以及突出的循环稳定性。该成果发表在《Journal of Alloys and Compounds》期刊上。
2022-2025年发表论文目录:
[1]Yueying Li, Zhidong Hou, Xiang Zhang, Yichen Du, Fei Xu, Xu Li,Jian-Gan Wang. Mildly-catalytic mediation of pseudographitic domain to boost hard carbontoward advanced sodium storage, Carbon, 2025, 234, 120022.
[2] Zhen Li, Yueying Li, Jian-Gan Wang. One Stone, Three Birds: A self-templating/activating route to synthesizenitrogen-doped porous carbon nanosheets forhigh-performance supercapacitors,Journal of Energy Storage, 2025, 108, 115160.
[3] Huanhuan Sun, Pan Wang, Wei Hua, Da Lei, Yueying Li, Jian-Gan Wang. Metallic TiN-mediated interface to boost charge transfer of bismuthvanadate toward enhanced photoelectrochemical water oxidation,Journal of Colloid and Interface Science, 2025, 689, 137212.
[4]Wei Hua, Yueying Li, Huanhuan Sun, Jian-Gan Wang. Synergistic Reconstruction of defect-enriched NiFe-LDH hierarchical structures toward large-current and stable oxygen evolution reaction, ACS Appl. Mater. Interfaces 2025, 17, 19745.
[5]Lingbo Ren,Yueying Li,Zhidong Hou,Jian-Gan Wang. Core-shell structured CoP@Ccubes as a superior anodefor high-rate and stable sodium storage, Batteries & Supercaps, 2024, 202400471.
[6] Yueying Li, Na Li, Zhen Li, Jian-Gan Wang. Binder-free barium-implanted MnO2 nanosheetson carbon cloth for flexible zinc-ion batteries, J. Chem. Phys., 2024,160, 014701.
[7]Yueying Li, Chenlu Hu, Zhidong Hou, ChunguangWei, Jian-GanWang. Green phytic acid-assisted synthesis of LiMn1−xFexPO4/C cathodes for high-performance lithium-ion batteries, Nanomaterials 2024, 14, 1360.
[8]Yueying Li, Shiyu Liang, Huanhuan Sun, Wei Hua, and Jian-Gan Wang. N, S co-doped carbon quantum dots modified TiO2for efficient hole extraction in photoelectrochemicalwater oxidation, J Mater Sci: Mater Electron, 2023, 34:1698.
[9] Yueying Li, Chen Dai, Xin Jiang, Xin Liu, Yawei Li, Shengnian Tie. Realizing the synergy of interface engineering and surface reconstructionin Ni(OH)2 for superior water oxidation, Journal of Alloys and Compounds, 2023, 936, 168175.
[10] Yueying Li, Wei Hua, Yanhao Guo, Shiyu Liang, Boxin Li, Liang Wang, Jian-Gan Wang. Surface-Fe enriched trimetallic (oxy)hydroxide engineered byS-incorporation and ligand anchoring toward efficient water oxidation. Journal of Colloid and Interface Science, 2022,617, 391-398.
[11] Yueying Li, Shiyu Liang, Huanhuan Sun,Wei Hua, Jian-GanWang. Defect engineering and surface polarization of TiO2nanorod arrays toward efficient photoelectrochemical oxygen evolution, Catalysts 2022, 12, 1021.
[12] Huanhuan Sun, Wei Hua, Shiyu Liang, Yueying Li, Jian-Gan Wang. Boosting photoelectrochemical activity of bismuth vanadate byimplanting oxygen-vacancy-rich cobalt (oxy)hydroxide, Journal of Colloid and Interface Science, 2022, 611, 278-286.